留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PCA-CRHJ模型的矿井突水水源判别

秋兴国 王瑞知 张卫国 张昭昭 张婧

秋兴国,王瑞知,张卫国,等.基于PCA-CRHJ模型的矿井突水水源判别[J].工矿自动化,2020,46(11):65 -71..  doi: 10.13272/j.issn.1671 -251x.2020040089
引用本文: 秋兴国,王瑞知,张卫国,等.基于PCA-CRHJ模型的矿井突水水源判别[J].工矿自动化,2020,46(11):65 -71..  doi: 10.13272/j.issn.1671 -251x.2020040089
QIU Xingguo, WANG Ruizhi, ZHANG Weiguo, et al. Discrimination of mine inrush water source based on PCA -CRHJ model[J]. Industry and Mine Automation, 2020, 46(11): 65-71. doi: 10.13272/j.issn.1671 -251x.2020040089
Citation: QIU Xingguo, WANG Ruizhi, ZHANG Weiguo, et al. Discrimination of mine inrush water source based on PCA -CRHJ model[J]. Industry and Mine Automation, 2020, 46(11): 65-71. doi: 10.13272/j.issn.1671 -251x.2020040089

基于PCA-CRHJ模型的矿井突水水源判别

doi: 10.13272/j.issn.1671 -251x.2020040089
基金项目: 

国家自然科学基金项目(61902311)

陕西省自然科学基础研究资助项目(2019JM -348)

陕西省科技厅资助项目(2020JM -522)

详细信息
  • 中图分类号: TD745

Discrimination of mine inrush water source based on PCA -CRHJ model

  • 摘要: 针对传统矿井突水水源判别模型存在非线性能力较差、模型稳定性较差、判别精度低等问题,基于主成分分析(PCA)法和确定性分层跳跃循环网络(CRHJ)构建了PCA-CRHJ矿井突水水源判别模型。引入PCA对多元时间突水序列进行降维并提取关键特征,重构突水数据,获得主成分突水序列,对CRHJ进行模型训练,将训练完成的模型应用到张集煤矿和新庄孜煤矿突水水源判别中进行有效性验证。结果表明:① 通过与CRHJ、确定性循环跳跃网络(CRJ)、回声状态网络(ESN)模型进行对比,表明PCA-CRHJ模型的实际判别效果最优,准确率可达100%;② PCA-CRHJ模型有5类主要参数,分别为储备池规模、输入连接权重、单向连接权重、分层双向跳跃权重、跳跃步长,对该5类参数进行敏感性分析,表明输入权重参数对模型判别结果的影响最大;当3类权重参数取得最优值且保持不变时,储备池规模对模型误差影响最大,而跳跃步长的影响则较小。

     

  • 加载中
计量
  • 文章访问数:  58
  • HTML全文浏览量:  16
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 刊出日期:  2020-11-20

目录

    /

    返回文章
    返回